Sunday, 24 September 2017

Código Médio De Média Ponderada


MetaTrader 4 - Indicadores Médias móveis, indicador MA para MetaTrader 4 O Indicador Técnico da Média de Mudança mostra o valor médio do preço do instrumento por um determinado período de tempo. Quando se calcula a média móvel, uma média do preço do instrumento para este período de tempo. À medida que o preço muda, sua média móvel aumenta ou diminui. Existem quatro tipos diferentes de médias móveis: simples (também conhecido como aritmética), exponencial, suavizado e linear ponderado. As médias móveis podem ser calculadas para qualquer conjunto de dados seqüenciais, incluindo preços de abertura e fechamento, preços mais altos e mais baixos, volume de negócios ou outros indicadores. Muitas vezes, é o caso quando se usam médias móveis duplas. A única coisa em que as médias móveis de diferentes tipos divergem consideravelmente umas das outras, é quando os coeficientes de peso, que são atribuídos aos dados mais recentes, são diferentes. Caso falamos de uma média móvel simples, todos os preços do período de tempo em questão são de valor igual. As médias móveis ponderadas exponenciais e lineares atribuem mais valor aos preços mais recentes. A maneira mais comum de interpretar a média móvel do preço é comparar sua dinâmica com a ação do preço. Quando o preço do instrumento sobe acima de sua média móvel, aparece um sinal de compra, se o preço cai abaixo de sua média móvel, o que nós temos é um sinal de venda. Este sistema de negociação, baseado na média móvel, não foi projetado para fornecer entrada no mercado diretamente no seu ponto mais baixo, e sua saída diretamente no pico. Permite atuar de acordo com a seguinte tendência: comprar logo depois que os preços chegam ao fundo e vender logo depois que os preços atingiram seu pico. Média móvel simples (SMA) Simples, em outras palavras, a média móvel aritmetica é calculada resumindo os preços do encerramento do instrumento durante um certo número de períodos únicos (por exemplo, 12 horas). Esse valor é então dividido pelo número desses períodos. SMA SUM (CLOSE, N) N Onde: N é o número de períodos de cálculo. Média Mínima Exponencial (EMA) A média móvel suavizada exponencialmente é calculada adicionando a média móvel de uma determinada parcela do preço de fechamento atual ao valor anterior. Com médias movidas exponencialmente suavizadas, os preços mais recentes são de maior valor. A média móvel exponencial em percentagem de P será semelhante a: Onde: CLOSE (i) o preço do encerramento do período atual EMA (i-1) A média móvel do encerramento do período anterior P é a porcentagem de usar o valor do preço. Média Mínima Suavizada (SMMA) O primeiro valor dessa média móvel suavizada é calculado como a média móvel simples (SMA): SUM1 SUM (FECHAR, N) As médias móveis e as médias sucessivas são calculadas de acordo com esta fórmula: Onde: SUM1 é o Soma total de preços de fechamento para N períodos SMMA1 é a média móvel suavizada da primeira barra SMMA (i) é a média móvel suavizada da barra atual (exceto para o primeiro) FECHAR (i) é o preço de fechamento atual N é o Período de suavização. Média de Movimento Ponderada Linear (LWMA) No caso da média móvel ponderada, os dados mais recentes são de maior valor do que mais dados iniciais. A média móvel ponderada é calculada multiplicando cada um dos preços de fechamento dentro da série considerada, por um certo coeficiente de peso. LWMA SUM (Fechar (i) i, N) SUM (i, N) Onde: SUM (i, N) é a soma total dos coeficientes de peso. As médias móveis também podem ser aplicadas aos indicadores. É aí que a interpretação das médias móveis dos indicadores é semelhante à interpretação das médias móveis de preços: se o indicador sobe acima de sua média móvel, isso significa que o movimento do indicador ascendente provavelmente continuará: se o indicador cai abaixo da média móvel, isso Significa que é provável que continue indo para baixo. Aqui estão os tipos de médias móveis no gráfico: Média móvel simples (SMA) Média móvel exponencial (EMA) Média móvel suavizada (SMMA) Média móvel linear ponderada (LWMA) Médias móveis ponderadas: o básico Ao longo dos anos, os técnicos encontraram dois Problemas com a média móvel simples. O primeiro problema reside no período de tempo da média móvel (MA). A maioria dos analistas técnicos acredita que a ação de preço. O preço das ações de abertura ou fechamento, não é suficiente para depender para prever adequadamente comprar ou vender sinais da ação de cruzamento de MAs. Para resolver este problema, os analistas agora atribuem mais peso aos dados de preços mais recentes usando a média móvel suavemente exponencial (EMA). (Saiba mais em Explorando a média móvel ponderada exponencialmente.) Um exemplo Por exemplo, usando um MA de 10 dias, um analista tomaria o preço de fechamento do 10º dia e multiplicaria esse número por 10, o nono dia por nove, o oitavo Dia por oito e assim por diante para o primeiro do MA. Uma vez que o total foi determinado, o analista dividiria o número pela adição dos multiplicadores. Se você adicionar os multiplicadores do exemplo MA de 10 dias, o número é 55. Este indicador é conhecido como a média móvel linearmente ponderada. (Para leitura relacionada, verifique as Médias móveis simples, faça as tendências se destacarem.) Muitos técnicos são crentes firmes na média móvel suavemente exponencial (EMA). Este indicador foi explicado de muitas maneiras diferentes que confunde estudantes e investidores. Talvez a melhor explicação venha de John J. Murphys Análise Técnica dos Mercados Financeiros (publicado pelo New York Institute of Finance, 1999): a média móvel suavemente exponencial aborda os dois problemas associados à média móvel simples. Primeiro, a média exponencialmente suavizada atribui um peso maior aos dados mais recentes. Portanto, é uma média móvel ponderada. Mas, enquanto atribui menor importância aos dados de preços passados, ele inclui no cálculo de todos os dados da vida útil do instrumento. Além disso, o usuário pode ajustar a ponderação para dar maior ou menor peso ao preço dos dias mais recentes, que é adicionado a uma porcentagem do valor dos dias anteriores. A soma de ambos os valores percentuais é de 100. Por exemplo, o preço dos últimos dias pode ser atribuído a um peso de 10 (.10), que é adicionado aos dias anteriores de peso de 90 (.90). Isso dá o último dia 10 da ponderação total. Este seria o equivalente a uma média de 20 dias, ao dar ao preço dos últimos dias um valor menor de 5 (0,05). Figura 1: Média em Movimento Suavizado Exponencialmente O gráfico acima mostra o Índice Composto Nasdaq desde a primeira semana de agosto de 2000 até 1º de junho de 2001. Como você pode ver claramente, o EMA, que neste caso está usando os dados de preço de fechamento ao longo de um Período de nove dias, tem sinais de venda definitivos no 8 de setembro (marcado por uma seta para baixo preta). Este foi o dia em que o índice caiu abaixo do nível de 4.000. A segunda seta preta mostra outra perna para baixo que os técnicos estavam realmente esperando. A Nasdaq não conseguiu gerar volume e interesse dos investidores de varejo para quebrar a marca de 3.000. Ele então mergulhou de novo para baixo em 1619.58 em 4 de abril. A tendência de alta de 12 de abril é marcada por uma seta. Aqui, o índice fechou em 1.961,46, e os técnicos começaram a ver os gerentes de fundos institucionais começar a retirar algumas pechinchas como a Cisco, a Microsoft e alguns dos problemas relacionados à energia. (Leia nossos artigos relacionados: Envelopes médios móveis: Refinando uma ferramenta de negociação popular e Bounce médio móvel). 6.2 Médias móveis ma 40 elecsales, ordem 5 41 Na segunda coluna desta tabela, uma média móvel da ordem 5 é mostrada, fornecendo uma Estimativa do ciclo da tendência. O primeiro valor nesta coluna é a média das cinco primeiras observações (1989-1993), o segundo valor na coluna 5-MA é a média dos valores 1990-1994 e assim por diante. Cada valor na coluna 5-MA é a média das observações no período de cinco anos centrado no ano correspondente. Não há valores nos dois primeiros anos ou nos últimos dois anos porque não temos duas observações em ambos os lados. Na fórmula acima, a coluna 5-MA contém os valores de chapéu com k2. Para ver como se parece a estimativa do ciclo de tendência, nós o traçamos juntamente com os dados originais na Figura 6.7. Planilha 40 elesales, quot principal de vendas de eletricidade residencial, ylab quotGWhot. Xlab quotYearquot 41 linhas 40 ma 40 elecsales, 5 41. col quotredquot 41 Observe como a tendência (em vermelho) é mais suave que os dados originais e captura o movimento principal das séries temporais sem todas as pequenas flutuações. O método de média móvel não permite estimativas de T onde t é próximo das extremidades da série, portanto, a linha vermelha não se estende às bordas do gráfico de cada lado. Mais tarde, usaremos métodos mais sofisticados de estimativa do ciclo de tendência que permitem estimativas próximas aos pontos finais. A ordem da média móvel determina a suavidade da estimativa do ciclo da tendência. Em geral, uma ordem maior significa uma curva mais suave. O gráfico a seguir mostra o efeito de alterar a ordem da média móvel para os dados residenciais de vendas de eletricidade. As médias móveis simples, como estas, geralmente são de ordem ímpar (por exemplo, 3, 5, 7, etc.). É assim que são simétricas: em uma média móvel da ordem m2k1, há k observações anteriores, k observações posteriores e a observação do meio Que estão em média. Mas se eu fosse igual, não seria mais simétrico. Médias móveis das médias móveis É possível aplicar uma média móvel a uma média móvel. Um dos motivos para isso é fazer uma média móvel em ordem uniforme simétrica. Por exemplo, podemos tomar uma média móvel da ordem 4 e, em seguida, aplicar outra média móvel da ordem 2 aos resultados. Na Tabela 6.2, isso foi feito nos primeiros anos dos dados de produção de cerveja trimestral australiana. Beer2 lt - window 40 ausbeer, começar 1992 41 ma4 lt-ma 40 beer2, order 4. center FALSE 41 ma2x4 lt-ma 40 beer2, order 4. center TRUE 41 A notação 2times4-MA na última coluna significa 4-MA Seguido por um 2-MA. Os valores na última coluna são obtidos tomando uma média móvel da ordem 2 dos valores na coluna anterior. Por exemplo, os dois primeiros valores na coluna 4-MA são 451.2 (443410420532) 4 e 448.8 (410420532433) 4. O primeiro valor na coluna 2times4-MA é a média desses dois: 450.0 (451.2448.8) 2. Quando um 2-MA segue uma média móvel de ordem par (como 4), é chamado de média móvel centrada da ordem 4. Isso ocorre porque os resultados agora são simétricos. Para ver que este é o caso, podemos escrever o 2times4-MA da seguinte forma: comece o amplificador de amplificação. Bigfrac (y y y y) frac (y y y y) Grande amplificação fractura fractura fratão frac14y frac14y frac18y. Fim É agora uma média ponderada de observações, mas é simétrico. Outras combinações de médias móveis também são possíveis. Por exemplo, um 3x3-MA é freqüentemente usado e consiste em uma média móvel da ordem 3, seguida de outra média móvel da ordem 3. Em geral, uma ordem final MA deve ser seguida por uma ordem final MA para torná-la simétrica. Da mesma forma, uma ordem ímpar MA deve ser seguida por uma ordem ímpar MA. Estimando o ciclo de tendência com dados sazonais O uso mais comum de médias móveis centradas é estimar o ciclo de tendência a partir de dados sazonais. Considere o 2x4-MA: fractura de fractura e fractura fratura de fractura. Quando aplicado a dados trimestrais, cada trimestre do ano recebe peso igual à medida que o primeiro e o último termos se aplicam ao mesmo trimestre em anos consecutivos. Consequentemente, a variação sazonal será promediada e os valores resultantes do chapéu t terão pouca ou nenhuma variação sazonal restante. Um efeito semelhante seria obtido usando um 2x 8-MA ou um 2x 12-MA. Em geral, 2 vezes m-MA é equivalente a uma média móvel ponderada da ordem m1 com todas as observações tomando peso 1m, exceto para os primeiros e últimos termos que tomam pesos 1 (2m). Então, se o período sazonal é igual e de ordem m, use um 2-m-MA para estimar o ciclo da tendência. Se o período sazonal for estranho e de ordem m, use um m-MA para estimar o ciclo de tendências. Em particular, um 2x 12-MA pode ser usado para estimar o ciclo de tendência dos dados mensais e um 7-MA pode ser usado para estimar o ciclo de tendência dos dados diários. Outras opções para a ordem do MA geralmente resultarão em estimativas do ciclo de tendência sendo contaminadas pela sazonalidade nos dados. Exemplo 6.2 Fabricação de equipamentos elétricos A Figura 6.9 mostra um 2x12-MA aplicado ao índice de pedidos de equipamentos elétricos. Observe que a linha suave mostra nenhuma sazonalidade é quase o mesmo que o ciclo de tendência mostrado na Figura 6.2, que foi estimado usando um método muito mais sofisticado do que as médias móveis. Qualquer outra escolha para a ordem da média móvel (exceto 24, 36, etc.) teria resultado em uma linha suave que mostra algumas flutuações sazonais. Lote 40 elecequip, ylab quotNome ordem de pedidos. Quotgrayquot quotgrayquot principal quotEquipamento de equipamentos elétricos (área do euro) 41 linhas 40 ma 40 elecequip, ordem 12 41. col quotredquot 41 médias móveis ponderadas As combinações de médias móveis resultam em médias móveis ponderadas. Por exemplo, o 2x4-MA discutido acima é equivalente a um 5-MA ponderado com pesos dados por frac, frac, frac, frac, frac. Em geral, um m-MA ponderado pode ser escrito como hat t sum k aj y, onde k (m-1) 2 e os pesos são dados por a, pontos, ak. É importante que todos os pesos somem para um e que sejam simétricos para que aj. O m-MA simples é um caso especial em que todos os pesos são iguais a 1m. Uma grande vantagem das médias móveis ponderadas é que eles produzem uma estimativa mais suave do ciclo da tendência. Em vez das observações que entram e saem do cálculo em peso total, seus pesos aumentam lentamente e diminuem lentamente resultando em uma curva mais suave. Alguns conjuntos específicos de pesos são amplamente utilizados. Alguns destes são apresentados na Tabela 6.3.

No comments:

Post a Comment